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Perturbation expansions for the transport quantities of dilute 
polymer solutions 
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Merseburg, GDR 

Received 27 March 1984 

Abstract. The dynamics of a single polymer chain in solution is formulated in the framework 
of path integrals. The method enables one to obtain the perturbation expansions of the 
transport quantities in powers of the excluded volume and the hydrodynamic interactions. 
The inelastic scattering function and the diffusion coefficient are considered in the first-order 
perturbation theory. 

1. Introduction 

The conformational and dynamic properties of long polymer chains in a solvent have 
been the subject of several experimental and theoretical investigations in recent years. 
The conformational properties of dilute and semi-dilute polymer solutions had been 
successfully investigated in the framework of the renormalisation group approach. 
The theoretical description of the dynamical properties does not exhibit such success. 
The phenomenological scaling (de Gennes 1979) provides a simple basis for arriving 
at the power law dependence of varicus quantities (i.e. diffusion coefficient, viscosity) 
on the number of segments per chain N and the monomer concentration. Quantitative 
calculations carried out as in the static case do not exist. The dynamical renormalisation 
group calculations given by Jasnow and Moore (1978) and Al-Noaimi et a1 (1978) 
and recently by Oono and Kohmoto (1983) are not performed strictly in the framework 
of the dynamical theory. The static blob concept is used by Jasnow and Moore and 
Al-Noaimi et al, whereas the approach used by Oono and Kohmoto is based on 
approximative expressions for the intrinsic viscosity and diffusion coefficient and not 
on the corresponding Kubo formulae. 

One of the reasons for such a situation is, in our opinion, connected with the fact 
that for the dynamic quantities in comparison with those in the static case, there do 
not exist good perturbation expansions in powers of the excluded volume strength. 
In the present work we give a method enabling us to obtain the perturbation expansions 
of the transport quantities such as the inelastic scattering function S ( k ,  t )  and the 
diffusion coefficient D in powers of the excluded volume and the hydrodynamic 
interactions. These perturbation expansions will be subsequently used to analyse S( k, t )  
and D in good solvents. We assume that the dynamic properties are governed by the 
Kirkwood diffusion equation. It is well known that this equation is a Fokker-Planck 
equation. Recently the Fokker-Planck equation was formulated in the framework of 
path integrals (Langouche er a1 1979). This formulation gives a natural way to arrive 
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at the perturbation expansions for the dynamic quantities under consideration. The 
perturbation solution of the Kirkwood equation was earlier used (Fixman 1965, see 
also Yamakawa (1971)) in connection with the investigation of the intrinsic viscosity. 
This approach corresponds, in fact, to the usual quantum mechanical perturbation 
theory. The perturbation expansions appearing in the framework of path integrals are 
like those in the quantum field theory. The advantages of these expansions are: ( 1 )  
they can be represented by graphs and (2)  they are suitable for the performance of 
the renormalisation program. 

The paper is organised as follows. Section 2 briefly reports the polymer formalism. 
The path integral formulation of the Kirkwood equation is represented in § 3.  The 
technique of the generating functional is reported in § 4. The evaluation of the 
generating functional for the Rouse model is given in § 5. In § 6 the evaluation of the 
inelastic scattering function for the Rouse model is carried out. Section 7 introduces 
the perturbation expansion of the generating functional. Section 8 gives the first-order 
correction to S ( k ,  t ) .  Section 9 reports on the evaluation of the diffusion coefficient. 

2. Model 

As a model of a polymer the continuous limit of the bead-spring model with excluded 
volume and hydrodynamic interactions between segments is used. The time evolution 
of the probability density P ( r ( s ) ,  t )  for a conformation r ( s )  ( O s  s s L, L is the contour 
length of the chain) is governed by the Kirkwood diffusion equation 

x [ S F / S r ( s 2 )  +G/Gr(s , ) ]P  (1) 

where Do= k n / &  k is the Boltzmann constant, T the temperature, 5 the segment 
friction coefficient, and 1 the statistical segment length. The Oseen tensor T p u (  r(sl )  - 
r(s2)) is defined in d dimensions by 

where 7 is the shear viscosity of the solvent. The free energy in units of kT for a 
continuous chain is given by 

where uo is the excluded volume strength. Instead of the continuous variable r ( s )  it 
is advisable to introduce the Fourier components & (normal coordinates), which are 
defined as follows: 
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The elastic term in the free enrgy expressed through 6 k  becomes 
oc 

F e , = ;  A ( k ) & ;  
k = O  

where A ( k )  = ( d /  I ) (  rk/ L)2.  After introducing the normal coordinates, ( 1  ) takes the form 

a p /  a = k ( ( k ) &k + DOv k p +v k [ DO(v k F e x  ) + Tkn ( A ( n ) 6 n  + ( v n F e x  + v  n 1p ( 3 

where V, = a/a &,,, Fe, is the second term on the right-hand side of (2), and 

TcL = loL ds, IoL ds2 QksI T p ” ( r ( s l )  - r(sZ!))Qs2n* 

The Einstein sum convention is used in (3) ( k ,  n = 0, 1,2, . . .). Equation (3) remains 
valid also for discrete chains with the difference that the indices k and n run from 
zero to N - 1, where N is the segment number of the chain. 

3. Representation as a path integral 

Equation (3) can b,” represented after introducing the momentum and position operators 
t k  = ( l / i )Vk and & = 6 k  respectively, as a Schrodinger equation (Langouche et a1 1979) 

i aP/a t  = I j p  (4) 

A 0  = - DOA ( k)Pk&k - i DOd, 

where the Hamilton operator A= f i 0  + gint is given by 

( 5 )  

(6) g i n ,  = -DO$, (v k F e x )  - $kTknA( n ) 6 n  - b k r k n  (VnFex)  - iikinrkn +$k ( v n  T k n  ). 

The b k  operators are contained in (5)-(6) on the left-hand side of &. In order to 
obtain the ordered Hamiltonian, the term Tc:V,”P in (3) was transformed as follows: 

TCiV ,” P = it,”( Tc: P )  + ( -V ,” Tc:) P (7) 

where the term - V i  TCL is explicitly given by 

where T F ” ( q )  is the Fourier transformation of the Oseen tensor and S(0) = Qtn = 00. 

This infinity appears as a consequence of the transform (7 )  and must be reduced in 
the final expressions. On that account we treat S(0) in the intermediate stage as a 
finite quantity. 

The eigenfunctions of & and b k  in the coordinate representation are respectively 

lk) = S ( 5 -  go), 

(SIP) = (2r)-3’2 exp(i6p). 

~ p )  = (2r)-3/2 exp( iP5 ) . 
The transfer matrix is 

Further, for So,. . . , t m , .  . . the abbreviation 5 is used. &J means 
chain, E:;’ kip,). 

k,p,  (for a discrete 
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The formal solution of (4) is 
A 

PI = exp[-i( t - to)H]P,. 

P(5, t ;  to, t o )  = (flexp[-i(t - to)fi115°) 

(8) 

(9) 

The matrix element 

gives the transition probability from the state (lo, to)  to the state (5, t ) .  The path 
integral representation of P( 6, t ; go, to)  is accomplished as follows. As a consequence 
of the ordering of p and 5 in H, 

(Plfi15) = h ( P ,  f ) ( P l S )  
applies, where h ( p ,  5) is identical with H(@, j ) ,  and p and 5 are c-numbers. Then for 
the matrix element (ljlexp(-iAtfi)Igo) for small A t  we obtain 

(5/e-’A‘”150) = [ &7 exp[ip(5- 5 0 )  -iAth(p, f”1 

where d p / ( 2 ? ~ ) ~  abbreviates j d p , / ( 2 ? ~ ) ~ .  . . j  dp,/(2?~)~. . . . After writing the right- 
hand side of (9) as 

(5I(e-’”‘”)“ It0) ( A ?  n = t - to)  

and using the completeness of the set 15) we get 

In the limit A t  + 0, equation (10) gives the path integral 

P ( f ,  t ;  lo, ?o)=[[9P&fexP(i [ I ~ d t ’ ~ ( t ’ ) ~ ( t ’ ) - ~ ( p ( ? ’ ) ,  m1) 

X S ( f  - 5( t ) ) S ( t 0  - 5( t o ) ) .  

The delta function in ( 1  1) is the abbreviation for 

S ( 5 ~ - 5 0 ( t o ) ) 6 ( 5 ~ - 5 1 ( t o ) ) .  . . * 
In the deduction of ( 1  1 )  we followed Slavnov and Fadeev (1978). Equation ( 1  1 )  was 
earlier obtained for the Fokker-Planck equation by Langouche et a1 (1979). 

4. Generating functional 

Following Langouche et a1 (1979), instead of P ( f ,  t ;  go, to)  we consider the generating 
functional Z G , j * )  which is defined as follows: 
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The ‘action’ S (  T, to)  is the integral in the exponent of ( 1  1). T is an arbitrary time 
which must only be large enough. The functional differentiation of Z with respect to 
j and j *  enables us to obtain different correlation functions. For example, the correla- 
tion function 

(5: ( t J  5; ( t I 1) = 1 d 5 ( t 2 )  1 d f ( t l  1 5f ( t 2 )  5; ( t i  ) p (  5 ( f 2 ) ,  5( t l  )) p (  f ( t l  ) , f (  to)  1 

(P(. . .) is the transition probability given by ( 1  1))  can be expressed as a functional 
derivative from the generating functional 

It can be directly proved that the following boundary conditions are satisfied 
(Langouche et a1 1979): 

( & ( t o ) )  = fOkZCi,j*), (Pk ( 7-1) = 0. 

Tne average over the initial conditions is not carried out in (13). The correlation 
function S,, .(k,  t - to)  = (exp[ik(r,( t )  - rs.( to) ) ] ) ,  can be expressed through ZG, j* )  as 
follows: 

(14) S,,,(k, t - t o )  = Z ( j ,  j *  = O), 

jm( t ’ )  = k (  Q,,s( t - t‘) - QS.,s( t’-  t o ) ) .  

where 

(15) 

The symbol a in (14) denotes the average over &( to ) (  f , (  to) ,  . . . , &,(to), . . .) which is to 
be carried out by means of the free energy F, 

(O)a=[  d 5 0  exp(-f)/[ d5exp(-F).  

The generating functional Zo(i, j * )  for the Hamiltonian Ho (Rouse model) will be 
calculated in 0 5 .  

Now we show that the perturbation expansion of Z ( j ,  j* )  in powers of hi,, can be 
represented in a closed form. In the nth order in hint we have to deal with the average 

11 ~ p 9 t h i n t ( T l )  * . . h i n t ( T n )  

xexp(iS( T, t o )+ [ ‘  dt’G(t’)g(t’)  +j*( t )p( t ’ ) ) ) ,  

The dependence of h,,, on & appearing through the terms VkFe, and Tknr which are 
supposed to be developed in Fourier integrals, can be represented in the form 
exp[iq( Os,, - QS,,)&( T)]. These terms can be taken into account through the modifica- 
tion of the source j,(t’)+ j m ( t ‘ )  + q ( Q S , ,  - Q,,)S(~’-T). ~ ~ ( 7 , )  and the remaining 
&( T,), which are not contained in VkFe, and Tkn, are represented as correlation functions 
from the powers ofpE( 7,) and ~ L ( T ~ )  which are again expressed as functional derivatives 
of Zo( j, j * ) .  Then we arrive at the following expression for Z( j, j*) :  
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The tilde in (16) means that & which are contained in V,F,, and T,, cause the 
modification of j k ( f ’ )  in Zo(j, j*)  in each order of the perturbation expansion (see 
(21)-(22)) and the remaining &(t’) and p m ( t ” )  must be replaced by 

( l/i)A/ 8jk( t ‘ )  and ( 1 / i)8/  6j$( t ” )  

respectively. 

5. Evaluation of Zo(j, j * )  

As ho(p ,  5 )  is a quadratic function relative to Pk and 6, Zo(j, j*)  is a Gauss integral. 
The Gauss integral, according to a well known property (Feynman and Hibbs 1965), 
is equal to the integrand with ‘action’ evaluated for the classical path 

Zo( j, j*)  = 9 p  96 exp[iSO( T, t o ) ]  - exp(iS:,) II 
where the ‘action’ So is given by 

T 

So= J d t ’ [ p k ( f ’ ) ~ k ( f ’ ) + i D 0 P f ( f ’ ) + D O h ( k ) P k ( t ’ ) 5 k ( f f )  

+jk(t’)gk(t’) + j z (  t’)Pk( t ’ ) ] .  

f0 

SE, is obtained from So by replacing &( t )  and Pk( t )  by the solution of the ‘classical 
movement equations’ 

6So/6gk(f) =o, sso/ 6p, ( t ) = 0. (17) 

The solution of (17) with the boundary conditions &(o) = t:, Pk( T )  = o (later we put 
to = 0) is 

Pk(f) = - dt’jk(t’) exP[-Doh(k)(t’- 211, L’ 
& k ( f )  = 6; exp(-DoA(k)t)- dt’jk(t‘) exp[-Doh(k)(t- t ‘ ) ]  lo‘ 

-2i& 1: dt‘Pk(f‘) exp[-Doh[k)(t- f ’ ) j .  

Finally for Zo(j , j * )  one obtains 

d t ‘ exp( -~oh(k ) t ) jk ( t ’ )  



Perturbation expansions for transport quantities 3047 

(18) coincides with the result obtained using the method stated by Langouche et al 
(1979). 

6. Inelastic scattering function for the Rouse model 

In the Rouse model the excluded volume and hydrodynamic interactions are absent 
(hint  = 0). The generating functional is given by (18). The correlation function Sss.(k, t )  
is obtained by means of (14), (15) and (18). The inelastic scattering function is obtained 
from S,,,(k, t )  as follows: 

S( k, t )  = 1-2 loL ds loL ds'  SsS( k, t ) .  

The average of (19) over the initial conditions 

StJk ,  t )  = . . . . . . dJ, . . . dJ,, . . . exp(-F,,)Z(j,j* = 0) 

gives after separation of the m = 0 mode and some elementary transformations 

This expression is identical with the result obtained in a different way by Pecora ( 
1965). 

963, 

7. Perturbation expansion 

The development of the exponent in (16) in powers of hint produces the perturbation 
expansion of. Z ( j , j * )a  in powers of the excluded volume and the hydrodynamic 
interactions. It is convenient to represent this expansion by means of diagrams. To 
achieve this we first represent hint graphically 

U 

Figure 1. 
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where the arrows and the full circle are associated with pk(T)=(l/i)8/8jE(?.) and 
A&,,)(T) = A(,,)( l/i)8/8jn(T) respectively. The different loops in (20) are associated 
with analytical expressions as follows: 

The factors associated with the full circle and the arrows are not written. The gm which 
are contained in T k n  and Fe, modify the sources j m (  t )  step by step in the perturbation 
theory as follows; 

j r s t  order 

second order 

j m  ( t )  * j m  ( t )  + 41 ( o m s ,  - O m s , )  8 ( t - 71 + Q2(  O m s ,  - O m s 4 )  8 ( t - 7 2 ) ,  (22) 

and so on. The result of the average of Zo( j , j * )  over the initial conditions can be 
represented as follows, 

Zo(j, j*),= (1 +I(j))zo(j,j*): 

where Zo( j ,  j * ) :  is given by 

dt’ 1 dt”  jm(  t ’ )  
m = l  A ( m )  0 

x [D(,)( t’ - t”) + D,,)( t” - t ’ ) ]  j m  ( t ” )  
r T  r~ 

- i  Jo d t ’ J  d t ” j m ( f ’ ) D “ , , ( t ’ - t ’ ’ ) j ~ ( f ’ ’ )  
0 
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In the first-order perturbation theory for I (  j )  we obtain 

I (  j )  gives the correction to Z ( j , j * )  which appear through the average over the initial 
conditions. 

The result of action of the functional derivatives (l/i)S/Sj,,(T) and (l/i)S/Sj;(T) 
on the exponential ZO( j ,  j * ) t  can be represented graphically as follows: 

The wavy line is associated with ZO(j, j * ) : .  The full circles are associated 
with j k ( r ' ) ,  and the full and broken lines (propagators) with - D ( k ) ( t ' - T )  and 
-( l / i ) (D(kl ( t ' -  T )  + D ( k ) ( ~  - t ' ) ) ,  respectively. The integration over t' is performed. 
The other ends of propagators correspond to the time T. Figure 2 shows the diagrams 
contributing to Z( j ,  j*)a in the first-order perturbation theory. 

U 
(1 + I ( j ) ) ( - )  

Figure 2. The diagrams contributing to Z( j , j * ) =  in the first-order perturbation theory. 

The propagators begin at the vertices of the loops. With each loop the integration 
i jT d7 is associated. The wavy line is ZO(j , j * ) :  with the sources which are modified 
for the first four diagrams according to (21). The fifth diagram is of first order with 
respect to hint and of second order with respect to the excluded volume and the 
hydrodynamic interactions. Its sources are modified according to ( 2 2 )  with T ,  = 7 2  = 7. 

In the perturbation expansion of the generating functional there appear terms which 
are proportional to D(,,,(O) (tadpoles). Going to the discrete version of the path integral 
for the generating functional (this must be done in the same way as for the transition 
probability P ( 5 ,  t ;  to, t o ) ) ,  we see that D(n,(0)  is to be interpreted as D(,,,(-O) and 
thus is zero. 

8. Inelastic scattering function 

Bringing the sources in the diagrams shown in figure 2 in accordance with (15)  we 
obtain the first-order correction to the correlation function S,, ,(k,  t )  (Stepanow 1983), 

S,,,(k, t ) =  S:,,(k, t ) ( l  - t I ~ , ~ ( k ,  t )  + I t , , ( k ,  t ) ) .  (24) 
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Zls,(k, t )  is given by ( 2 3 )  with source fixed according to (15). The function I $ ( k ,  t )  is 

The scattering function S ( k ,  t )  can be represented in the following form: 

S ( k ,  t )  = S o ( k ,  t )  +vol-4S~'2f,(Sok2, DoIt/S.i) 

+ k2so(gr- ' /  7$@2f,(Sok2, Dolt /Si)  

where So = LI. The functions f i  and f i  are given by (23) - (25) .  

9. Diffusion coefficient 

Now we show how the diffusion coefficient of the polymer chain can be expressed 
through the generating functional. The starting point is the Einstein formula for the 
diffusion coefficient 

1 loL ds loL ds' ( ( r s ( t )  - r.7,(0))2h. ( 2 6 )  D = - lim t - '  L - ~  
2 d  1 - 2  

It can be shown that ( 2 6 )  is equivalent to the well known Kubo formula for the diffusion 
coefficient. Expressing rs( I )  through & ( t ) ,  equation ( 2 6 )  gives 

The second and third terms an the right-hand side of ( 2 7 )  do not contribute to D. The 
third term becomes zero if one chooses the origin of the coordinates system in the 
centre of gravity of the chain (go(0) = 0). Taking into account that in the first term 
only the k = 0 mode gives the required contribution, we obtain 

Equation ( 2 8 )  can also be rewritten equivalently as 

D = ( 2 d L ) - '  lim t - l ( ( & (  t )  - to(0))2), 
1-a2 

which resembles the diffusion coefficient for one particle. Expressing Si( t )  through 
Z (  j ,  j * )  in accordance with (13), we obtain for the diffusion coefficient 

Differentiating in accoradance with ( 2 9 )  the diagrams shown in figure 2 for the diffusion 
I 
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coefficient, it follows that 

5N dL r+.= t 

The remaining diagrams do not contribute to D. In (30) the full line with the open 
circle is associated with -D(o,(t - T ) .  The diagram in (30) corresponds to the following 
expression: 

The exponential function in (31) (wavy loop in (30)) is 

After carrying out the integration in the expression (31) we obtain 

where 

(=  (L /q ) (d /21 r l )~ ’~ l /d ,  

(32) coincides with the expression following from the well known equation of Kirkwood 
(Yamakawa 1971, p 280). 

For example, in figure 3 we represent the diagrams contributing to D u p  to second 
order in the excluded volume strength. The numbers in the diagrams are the factors 
which must be taken into account in the analytical expressions associated with diagrams. 
The analytical expression which is associated with the second diagram is given by 

where the source j is given by (22). 

Figure 3. The diagrams contributing to D up to second order in the excluded volume 
strength. 
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10. Conclusion 

In the present work we have, for the first time, formulated the dynamics of a single 
polymer chain in a solution in the framework of the path integral. In this way we 
arrive at the perturbation expansions for the transport quantities such as the inelastic 
scattering function and the diffusion coefficient in powers of the excluded volume and 
the hydrodynamic interactions. The author has shown that the intrinsic viscosity can 
also be expressed through the generating functional, and the present method thus 
enables one to obtain also the perturbation expansion for the intrinsic viscosity. 
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